

◀ 지하주차장 천정 누수

1.1 하자내용

└, 지하주차장 지하5층 천정 누수

1.2 하자원인

- 지하4층에 위치한 기계실 바닥 방수 미실시(도면: 침투성 방수)
- 기계실바닥 무근 타설 후 트렌치 내부 액체방수 실시 후 미장 마감
- 기계실 위치가 지하주차장 중간층에 위치하여 각종 기계류의 진동으로 인해 구조체 균열발생 우려됨
- 바닥진동으로 인한 트렌치 내부 액체방수 파손으로 인해 트렌치 내부의 퇴수들이 지하5층 천정으로 떨어짐

1.3 조치

- 기계실 트렌치 바닥 철거 후 탄성재질의 방수 보강 후 미장 재시공
- 지하5층 천정 균열보수공사 시행 후 흡음뿜칠 마감 재시공

1.4 대책

- 기계실등 진동 및 떨림등이 있는 공간은 최하층으로 배치할 것, 다만 필요에 의해서 중간층에 설치시 진동등에 의한 방수층 파손에 철저히 대비할 것
- 기계실등의 트렌치 방수시 탄성도막계열의 방수 시공할 것

Plus Tip. 지하주차장 균열감소 방안

지하주차장 균열로 인한 누수는 아파트 하자 중 심각한 민원문제로 대두되고 있으며 건물의 상습적인 공통하자 사항이며 사후 보수공사비 과대투입이 우려되는 하자이다. 시공시 철저한 품질관리를 하여 사후투입비를 감소시킬 수 있는 방안수립이 필요하다. 슬래브 균열원인으로는 구체의 구조적인 문제와 시공상의 미흡함도 있으나, 이보다는 CON'C 타설후 지하주차장 상판을 작업공간으로 사용하기 때문에 발생하는 균열이 상당수 차지하므로 작업공간 하부의 지하층에 대한 철저한 보강대책이 요구된다.

	균열 분류	발생 원인	균열 감소 방안	대 책
		 재료적 측면 a. 콘크리트의 단위 시멘트량 과다 b. 골재의 품질/ 실적율/이분함량 /수질 	- 단위시멘트량 감소방안 강구 - 조세골재의 관리 - 단위수량감소	 레디믹스 콘크리트 업체 선정시 단위 시멘트량 감소 방안 강구 요청 업체 선정후 레미콘 공장 방문 골재 확인 레미콘 운반시간 준수
	건조수축균열	- 구조부재간의 구속	 지하외벽주위 슬래브내에 Wire Mesh등 보강근 배근 시공이음부 주위 슬래브내에 보강근 배근 보기둥 Joint Slab내에 보강근 배근 	- 양생포 설치 급격한 건조 방지(직사광선,바람,습도)
구조적 균		- 기타 시공적 측면	- 양생 방법 개선	- 타설지후 양생포 또는 비닐커버 설치 - 응결중 습윤양생 실시
	그ㅈ저 그여	- 시공하중의 제어	- Jack Support 관리에 세심한 주의관리 - 시공하중의 재분석	- 중차량로의 집중적 계획관리 및 J/S설치
	1 포크 판결	- 피복두께 관리	- 슬래브 피복이 3cm에서 7cm로 증가되면 슬래브 단면성능이 약 40% 감소됨(철근위치 불량)	- 스페이셔 및 결속선 시공철저 - 시공업체 주기적인 교육

_ 건설기술|쌍용

88		nie in
	2	
5]]
-		
\$		2
1		5
No.		3
ê ,	-	-
-		•
-	100	. 5
§ :		
100	_	
474		_
	1000	
_		_

균열 분류	발생 원인	균열 감소 방안	대 책
	– 거푸집 변형 /	- 적절한 거푸집 설계 검토후 시공	- 거푸집 및 동바리
	동바리 처짐		설계후 시공
	- 콘크리트 양생초기의 침하균열	- 수직 · 수평부재 동시타설시	- 수직부재 (기둥 · 벽)의 침하
		가능한 수직부재 침하발생 이후	발생이 어느정도 진행된 후
침하 및		수평부재 타설토록 타설계획수립	수시간후 수평부재가 타설
기타균열		 양생초기의 급격한 수분증발 	되도록 타설계획 수립
		억제 위한 양생계획 수립	- 진동 다짐 준수
	- 시공 이음부 균열	- Construction Joint면 처리관리에 유의 (Rib Lath 이용등)	- Joint면이음부관리
			(Rib,Lath,청소등)
			- 시공계획서 작성

옥상 파라펫 균열로 인한 최상층세대 누수

2.1 하자내용

- 옥상 파라펫 이어치기 부위 균열 누수로 인해 최상층세대 천정으로 우수 침투

_,옥상 파라펫 균열부위 전경

└,옥상 배수로 바닥 균열부위 전경

2.2 하지원인

- 옥상 배수로 무근 CON'C 타설시 수축 및 팽창에 따른 대비 미흡 (큐션제 미작업)
- 옥상배수로 바닥 수축팽창에 따른 파라펫 이어치기 부위 크랙발생
- 옥상 배수로 방수를 무근 CON'C위에 시행하여 크랙균열부위로의 우수유입 에 취약함

2.3 조치

- 보수부위가 옥상층인연유로 외부 작업의 어려움
- 옥상 파라펫 균열부위에 아크릴계 탄성 도막제를 도포하여 표면도막을 형성, 우수유입 방지

2.4 대책

- 방수층 모서리 부분은 콘크리트 누름층이 있 는 경우 콘크리트의 열신축을 흡수하기 위한 발포 폴리에틸렌등의 완충재를 설치할 것
- 옥상 배수로 방수를 무근 CON' C 아래부분 에 탄성도막계열로 시공하여 크랙에 의한 균열누수에 대비하여야 함
- 도막방수층과 무근콘크리트가 직접 접촉되 지 않도록 외단열재 조인트, 특히 파라펫 코 너 부위에 세심한 시공 요구됨.
- 지붕 슬라브 콘크리트 구배 타설 후 쇠흙손 마감 및 노출 방수 적용(내단열 실시)

욕실 앞 습기에 의한 3 목실 보 답기

3.1 하자내용

3.2 하지원인

- 본공사욕실방수작업시 공정상비닥방수공사 후문틀미블이 설치됨으로 미블 설치 후 미블 하부 방수보강을 별도 실시하여야 추후 거실 로의 습기유입을 차단할 수 있으나 마블하부 시춤부위 방수보강 누락으로 인하여 발생함
- 본공사시 방수턱이 낮게 시공됨에 따라 마 블설치시 하부 사춤량 과다
- 욕실바닥습기가 마블하부 사춤부위로 진행 되어 마감바닥재 손상

3.3 조치

문틀하부 마블해체 후 마블 사춤부위를 1차 액체방수 후 도막보강을 실시 후 마 블 재설치

3.4 대책

- 본공사시 방수턱 일정 높이 이상으로 철저히 시공할 것
- 하부씰 사춤부위 추가 방수 작업 필요

외부우수 내부유입으로 인한 마감재 변색

4.1 하자내용

4.2 하지원인

4.3 조치

- 기존 배수로 철거후 배수로 깊이를 조정
- 외벽판넬 하부습기가 진행중인 부분을 절단, 방수보강 작업후 석재타일 시공
- 기존의 화강석으로 트렌치 마감공사시 구배조정의 어려움으로 인해 트렌치 부분은 석재타일로 시공
- 출입구 앞신설 트렌치 부분은 사람의 왕래가 빈번함으로 트렌치 설치 후 커버설치

4 4 대책

- 집중 강우를 대비하여 충분한 배수로 깊이를 고려할 것
- 배수로 주변등 습기가 다량 발생하는 곳에는 물에 약한 판넬 사용 금지
- 홀 입구등 우수의 내부 유입이 우려되는 장소는 구배조정시 세심한 시공 필요

건설기술|**쌍용** 2005 Spring _